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MULTI-CELL LINEAR PRECODERS FOR 
MASSIVE MIMO WITH MATRIX 

NORMALIZATION 
Eze Gerald Chukwudi 

ABSTRACT 

Massive multiple-input multiple-output (mMIMO) is one of the major key enabling technology for future generation networks, 

which has large number of antennas at both base stations (BSs) and the user equipments (UEs) to provide high throughput using 

signal processing techniques. In this research work, we studied downlink (DL) sum throughput of mMIMO networks using multi-

cell basic linear precoding techniques. The multi-cell zero-forcing (M-ZF), multi-cell regularized zero-forcing (M-RZF), single-

cell minimum mean squared error (S-MMSE), and multi-cell minimum mean squared error (M-MMSE) precoding techniques are 

utilized in the DL. The closed bound expressions of spectrum efficiency (SE) of these linear precoders were derived and 

analytically expressed. Monte-Carlo simulations were performed with channel-estimators such as minimum mean squared error 

(MMSE) and element-wise MMSE (EW-MMSE) estimates. The numerical analysis shows that the M-MMSE tends to out-

perform S-MMSE, M- RZF, and M-ZF by having the highest average sum throughput at any number of antennas with different 

UEs in the two-channel estimators. Finally, there is an average sum throughput performance gain of using the M-MMSE over 

other basic linear precoding techniques. 

 

Keywords: mMIMO, throughput, M-MMSE, S-MMSE, M-RZF, M-ZF. 

——————————      —————————— 
 

1   INTRODUCTION 

The global demand for frequency spectrum in the wireless access 

technology has motivated the research and exploration of wireless 

communication sector known as massive multiple-input multiple-

output (mMIMO). Massive MIMO is one of the key enabling 

technologies for next-generation networks, multiple antenna 

technology where multiple antennas exist at both the transmitter and 

receiver. Multiple antennas are equipped at both the base station 

(BS) and user equipment (UE) or mobile station to boost the 

transmission and/or reception of communication networks [1]. 

MIMO technology was categorized into three logical classes viz.: 

single-user MIMO network, multi-user MIMO network, and 

massive MIMO network. The massive MIMO Networks are an 

extended MIMO technology that was introduced in the third 

generation (3G) technology like LTE/LTE-A, IEEE 802.16e 

(WiMAX), IEEE 802.11ac/n (WiFi), and other protocols and 

networks [2]. The massive MIMO involves a massive number of 

antennas located at the BS and to serve many UEs (or user 

terminals) at the same time with limited bandwidth and power in 

cellular communication [3], [4]. Figure 1 depicts a massive MIMO 

single-cell scenario to serve one or a few users simultaneously; 

massive MIMO has the following benefits: spectral efficiency (SE), 

energy efficiency, reliability, and signal processing [6]. The 

limitations of a massive MIMO network are pilot contamination, 

channel estimation, radio propagation, and orthogonality of channel 

responses. In existing literature, factors that affect SE in massive 

MIMO network are pilot contamination, transmit powers, spatial 

channel correlation, and pilot reuse factor [7], [8].  

 

The massive MIMO is defined as a network that consists of: (i) a 

number of BS antennas M in the cell that must be far greater than 

the active number of UE (or mobile terminals) K (M ≫ K) with 

antenna-UE ratio 
𝑀

𝐾
 > 1 in order to achieve effective channel  
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Fig. 1: Massive MIMO network in a cell [1]. 

 hardening; (ii) the number of cells L must be greater than one (L ≥ 

2) working under synchronous time division duplex (TDD) 

operations/protocol; (iii) the transmit precoding and receive linear 

combining signal processing techniques; and (iv) the utilization of 

BS antennas M with fully digitized transceiver chains and spatially 

multiplexed number of UE, K ≥ 8 per single cell [7-8].  

 

There is a massive demand of data traffic in massive MIMO 

networks within the same scarce bandwidth resources; the number 

of antennas at BS requires to be raised to serve several UEs at the 

same time. Therefore, massive MIMO technology has become 
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leverage for the next generation of wireless communication systems. 

Massive MIMO has a data throughput of 10–100 times the existing 

traditional MIMO technology [1]. The MIMO network with a 

limited number of antennas at BS is already functional, but these 

small numbers of antennas do not enhance the performance of the 

network significantly. The sum spectrum efficiency (SE) and data 

throughput can be boosted remarkably by increasing the number of 

antennas at BS [7]. Multiple antennas at BS can transmit more data 

signals to UEs and can separate spatial directed signals by spatial 

processing techniques [8]. Equipping BS with multiple antennas is 

more beneficial in SE and data throughput than at mobile UEs. Each 

addition of antenna at the BS also needs more directivity and 

transmit power, and this results to more causes complexity in the 

numerical computation and simulation.  

Moreover, the excess of BS antennas increases the SE per UE, 

allowing high data throughput per UE with high probability. The 

coherent processing requires accurate channel estimation, which can 

be obtained through the transmission of known pilot signals. 

Implementing a TDD protocol enables channel estimates obtained 

from uplink pilots to be used both for uplink receive combining and 

DL precoding by utilizing the reciprocity of propagation channels. 

This makes it possible to operate mMIMO networks with any 

number of BS antennas. In a multi-cell environment, the reuse of 

pilot signals between cells causes pilot contamination that decreases 

the quality of channel estimation and generates coherent 

interference from/to the pilot-sharing UEs.  

 

In massive MIMO networks, the channel gain becomes more 

concentrated around its mean when increasing the number of BS 

antennas. This phenomenon, where a fading channel behaves more 

deterministically, is called channel hardening. A commonly used 

model in the performance analysis of massive MIMO is the i.i.d. 

model, where the UE channels become orthogonal as the number of 

BS antennas increases. This mutual orthogonality is sometimes 

referred to as “favorable propagation” [1], [2], [5-8]. Channel 

hardening and favorable propagation are properties of massive 

MIMO channels. 

 

Precoding, a downlink signal processing technique is carried out at 

the base station before the transmission of the signal whereas the 

uplink signal processing technique is known as decoding [7], [8]. 

 
Fig. 2a: Precoding model of massive MIMO networks with M-

transmitted base station antennas and K-received single-antenna UE 

terminals [14]. 

Data signal from all BS antennas is transmitted to UEs with 

different amplitude and phases to beam and focus the signal 

spatially as depicted figure 2a. This is referred to as beamforming 

but this does not mean that a signal beam is always produced from a 

particular angular direction and that analog phase-shifters are 

utilized [8], [13]. In contrast, precoding means that each antenna 

transmit data signal is produced separately in the digital baseband.  

This signal has full flexibility in the signal being generated. The 

downlink signal processing technique referred to as precoding is 

very pertinent to mitigate the interference between the UEs.  

 

The mMIMO precoding techniques are classified into linear 

precoding methods, non-linear precoding methods, PAPR precoding 

methods, and machine-learning-based precoders [14-15]. 

Linear precoding techniques include [14-15]: 

i. Approximate matrix inversion precoders depends mainly 

on the matrix inversion of the downlink mMIMO channels 

(examples are truncated polynomial expansion (TPE) 

algorithm, the Neumann series approximation (NSA) 

algorithm, the Newton iteration (NI) algorithm, and the 

Chebyshev iteration (CI) algorithm).  

ii. The fixed-point iteration-based linear precoding 

techniques use iterative algorithm to realize the downlink 

mMIMO channels (e.g. Gauss-Seidel (GS) algorithm, the 

successive over-relaxation (SOR) algorithm, the conjugate 

gradient (CG) algorithm, and the Jacobi iteration (JI) 

algorithm). 

iii. The matrix decomposition based-linear precoding 

techniques for massive MIMO networks are traditionally 

used for the matrix inversion process instead of using an 

explicit matrix inversion in small-scale MIMO networks 

and it is numerically stable over the basic linear precoder 

techniques. The matrix decomposition is classified into 

QR decomposition algorithm and the Cholesky 

decomposition (CD) algorithms. 

iv. The basic linear precoding techniques (or schemes) 

depend majorly on using the information signals from the 

BS and the precoding matrix to generate the transmitted 

signals the UEs. The basic linear precoding techniques are 

maximum ratio (MR), zero-forcing (ZF), regularized zero-

forcing (RZF), single-cell minimum mean squared error 

(S-MMSE), and multi-cell minimum mean squared error 

(M-MMSE). 

 

Although linear precoding techniques deteriorate in performance 

than the other mMIMO precoding techniques under certain 

scenarios, they still play a vital role in the BS design due to their 

relative non complexity [14]. The main focus of this work is to 

investigate multi-cell basic linear precoding techniques in massive 

MIMO networks for multi-cell scenarios. 

  

A basic linear precoding technique that cancels all the pilot 

contamination (or interference), both intra-symbol and intra-user 

interference is the Zero-forcing (ZF) [16], [17]. Zero-forcing (ZF) is 

the matrix inversion, which produces the desired interference 

suppression [16].  

A regularized form of ZF precoding known as regularized zero-

forcing (RZF) is situated between maximum ratio (MR) and zero-

forcing (ZF). RZF is sharing the same properties and characteristics 

with both [16].  

A practical remedy for the channel matrix inversion is RZF [7-8], 

which uses a regularization parameter to make the channel matrix 

well-posed for the right inversion. Unlike ZF, multiuser interference 

cannot be cancelled by RZF and thus needs to be appropriately 

managed by optimizing the regularization parameter. So far, most of 

the existing works considered the problem of optimizing the 
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regularization parameter based on the equal-power allocation to 

UEs, for which the regularization parameter is analytically found for 

the case of sum SE under sum power constraint, providing that both 

number of transmit antennas and number of served UEs go to 

infinity with fixed ratio [20]. This value of the regularization 

parameter is used for analyzing the SE of RZF [20] or comparing 

the performance of RZF with that of other techniques [20]. 

 
L. D. Nguyen et al. [20] compared the performance achieved by the 

proposed Multi-user RZF joint design with that achieved by the 

existing RZF techniques to show the importance of the joint 

optimization in power allocation and regularization parameter. 

 

Arguably, the most successful and practically applicable precoding 

scheme used today is RZF precoding [27]  also known as minimum 

mean square error (MMSE) precoding, transmit Wiener filter, 

generalized eigenvalue-based beamformer, etc.; see [26, Remark 

3.2]. Classical RZF precoders are only defined for single cell 

systems and thus do not take inter-cell interference into account. 

Disregarding available information about inter-cell interference is 

particularly detrimental in high density scenarios, where 

interference is a main performance limiting factor [25]. Multi-cell 

RZF (M-RZF) is referred to as interference-aware RZF (iaRZF) in 

[25]. 

 

The single-cell minimum mean squared error (S-MMSE) precoding 

technique amplifies the desired signal but also suppresses coherent 

and non-coherent interference from within the cell. The single-cell 

precoding techniques are RZF, ZF, and MR [7-8]. 

In contrast to S-MMSE, multi-cell minimum mean squared error 

(M-MMSE) is a multi-cell precoding technique that not only 

maximizes the desired signal but also suppresses coherent and non-

coherent inter-cell and intra-cell interference from the other cells [7-

8].  

To depict clearly the advantages of M-MMSE technique [18-19], 

simulation results for M-RZF and M-ZF techniques from [21], and 

the S-MMSE technique will be provided for comparison in this 

work using matrix normalization.  

 

2 SYSTEM MODEL  
We consider the downlink of a massive MIMO cellular network 

with multi-cell network up to 16 cells.  

The BS of each cell has M antennas and serves K single-antenna 

UEs in the same time-frequency resource using synchronous time-

division duplex (TDD) protocol.  

The system model for downlink (DL) may be determined as 

given in [15]: 

𝒚𝒋𝒌 =  ∑(𝒉𝒋𝒌
𝒋 )

𝑯
𝑳

𝒋=𝟏

𝒔𝒋 +  𝒏𝒋𝒌                                         (1) 

L indicates the number of cells, (.)H indicates the Hermitian 

transpose matrix operator and the received DL signal 𝒚𝒋𝒌 𝝐 ℂ𝑴×𝑲 at 

UE k in cell j is modeled above. 𝒉𝒋𝒌
𝒋 𝝐 ℂ𝑴×𝑲 is the mMIMO DL 

channel matrix, where ℂ denotes a complex value matrix, M is the 

number of BS antennas represents the number of rows in the matrix 

and K is the number of UEs represents the number of columns in the 

matrix, j superscript denotes the BS’s cell index and jk subscripts 

denote kth UE in cell j. 

𝒉𝒋𝒌
𝒋 =  𝑵𝑪 (𝟎, 𝑹𝒋𝒌

𝒋
)                                                               (2) 

𝒉𝒋𝒌
𝒋  is the correlated Rayleigh channel and 𝑹𝒋𝒌

𝒋
 𝝐 ℂ𝑴×𝑴 is the 

spatial correlation matrix, where j superscript represents the BS’s 

cell index and jk subscripts represent kth UE in cell j. 𝒉𝒋𝒌
𝒋
 is 

modeled by circularly symmetric complex Gaussian distribution 

having circular symmetry 𝑵𝑪 with zero mean and the spatial 

correlation matrix. The receiver noise may be expressed as  

 𝒏𝒋𝒌  =  (𝟎, 𝝈𝟐)                                                                     (3) 

Where 𝒏𝒋𝒌 represents the additive white Gaussian noise (AWGN) 

vector and 𝒔𝒋 is the DL transmit signal [15-16].  

 

2.1 Downlink Channel Estimators 
For efficient usage of BS antennas, each BS is required to acquire 

knowledge of the channels from the UEs which are active in the 

coherence block [17]. The BS j estimates the channels knowledge 

from its UEs in a particular cell j. The channel estimates can be 

determined from the uplink pilot signal 𝒀𝒋
𝑷  received at BS j, which 

can be defined as [15], [17] expressed in equation (4). 

𝒀𝒋
𝑷 =  ∑ √𝒑𝒋𝒌 𝒉𝒋𝒌

𝒋

𝒌𝒋

𝒌 =𝟏

𝝑𝒋𝒌
𝑻 +  ∑ ∑ √𝒑𝒍𝒊 𝒉𝒍𝒊

𝒋

𝒌𝒍

𝒊 =𝟏

𝝑𝒍𝒊
𝑻 +  𝑵𝒋

𝒑

𝑳

𝒍=𝟏
𝒍≠𝒋

    (4) 

The first part in Equation (4) denotes the desired pilots in the cell, 

the second part denotes the interfering pilots from other adjacent 

cells and then the third part 𝑵𝒋
𝒑
 denotes the receiver noise. 

Matrix 𝑵𝒋
𝒑

 𝝐 ℂ𝑴×𝝉𝒑  contains independent identically distributed 

elements which follow a complex Gaussian distribution with zero 

mean and noise variance 𝝈𝟐. 𝒑𝒋𝒌 is deterministic uplink pilot signal 

and power coefficient for the pilot of user k in cell j. In the channel 

estimation phase, the aggregated received uplink pilot signals at BS 

j are denoted as  𝒀𝒋
𝑷 𝝐 ℂ𝑴×𝝉𝒑   where 𝝉𝒑 is the length of a pilot 

sequence (and also equals to the number of orthogonal pilot 

sequences available for the network. Generalized pilot reuse was 

supported by denoting the relation between 𝝉𝒑 and K by 𝝉𝒑 = 𝒇𝑲, 

where 𝒇 is the pilot reuse factor (1, 2, 4 or 16) [17]. The universal 

pilot reuse factor of f =1 and non-universal pilot reuse factors of f = 

2, 4, 16 [11]. The mutually orthogonal uplink pilot matrix 𝝉𝒑 was 

organized as columns at BS j,   𝝑𝒋 = [𝝑𝒋𝟏, 𝝑𝒋𝟐, 𝝑𝒋𝟑, … , 𝝑𝒋𝒌]𝝐 ℂ𝝉𝒑 ×  𝑲 

which were transmitted by the kth UE of the cell j. All pilot 

sequences are assumed to originate from a predefined orthogonal 

pilot book in which sequence 𝝑𝒍𝒊
𝑻  𝝐 ℂ𝝉𝒑 was defined as below [15] 

and [17] expressed in equations (5a) to equation (6): 

BS j correlates  𝒀𝒋
𝑷 with 𝝑𝒋𝒌

∗  to estimate𝒚𝒋𝒌
𝒋   𝒑

. 

    𝒚𝒋𝒌
𝒋   𝒑

=  𝒀𝒋
𝑷𝝑𝒋𝒌

∗                                      (5a) 

𝝑𝒋𝒌
𝑯𝝑𝒊𝒌

= {
𝝉𝒑  𝒘𝒉𝒆𝒏 𝒋 = 𝒊

𝟎  𝒘𝒉𝒆𝒏 𝒋 ≠ 𝒊
                                                     (5b) 

MMSE Channel Estimator may be expressed in equation 

(6) as  obtained in [15] and [17] 

�̂�𝒋𝒌
𝒋

=  √𝒑𝒋𝒌𝑹𝒋𝒌
𝒋

𝒁𝒋𝒌
𝒋

𝒚𝒋𝒌
𝒋   𝒑

                                                              (6) 

𝒁𝒋𝒌
𝒋

=  ( ∑ 𝒑𝒋′𝒌′𝝉𝒑𝑹𝒋′𝒌′
𝒋

+  𝝈𝟐𝑰𝑴

(𝒋′,𝒌′)∈ 𝒒

)

−𝟏

                            (7a) 

𝑹𝒋𝒌
𝒋

 𝝐 ℂ𝑴×𝑴 is the spatial correlation matrix, where j superscript 

represents the BS’s cell index and jk subscripts represent kth UE in 
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cell j. 𝒁𝒋𝒌
𝒋

 is the matrix of the inverse of the normalized processed 

signal correlation matrix defined in [15]. 

𝒒 =  {(𝒋′, 𝒌′) ∶ 𝝑𝒋𝒌 =  𝝑𝒋′𝒌′ ,   𝒋′ = 𝟏, 𝟐, 𝟑 … 𝒋,  𝒌′ = 𝟏, 𝟐, 𝟑 … 𝒌 }(7b)  

τp samples are reserved for UL pilot signaling in each coherence 

block. The set above defines the indices of all mobile terminals 

(UEs) that use the same pilot sequence as user (UE) j in cell k.  

Hence, (j', k') ∈ q implies that UE k' in cell j' uses the same pilot as 

UE k in cell j.  

EW-MMSE Channel Estimator may be expressed in 

equation (8) as obtained in [15] and [17]: 

[�̂�𝒋𝒌
𝒋
]

𝒎
=  

√𝒑𝒋𝒌 [𝑹𝒋𝒌
𝒋

]
𝒎𝒎

∑ 𝒑𝒋′𝒌′𝝉𝒑 [𝑹𝒋′𝒌′
𝒋

]
𝒎𝒎

+  𝝈𝟐
(𝒋′,𝒌′)∈ 𝒒

𝒚𝒋𝒌
𝒋   𝒑

                  (8) 

Where �̂�𝒋𝒌
𝒋
 is the EW-MMSE estimate of 𝒉𝒋𝒌

𝒋
, [15-17]. 

The matrices transmit precoding:  

The transmit powers of all UEs in jth cell from BS j: 

𝑷𝑱

= 𝒅𝒊𝒂𝒈 (𝑷𝒋𝟏, 𝑷𝒋𝟐 , 𝑷𝒋𝟑 … 𝑷𝒋𝒌)  𝝐 ℂ𝑲×𝑲            (10a) 

Subscripts of estimated channel matrix �̂�𝒋𝒍 in Eqn. (10b) below 

denote the channel connection between BS j and all the UEs in cell l 

with the MIMO DL channel. 

�̂�𝒋𝒍 = �̂�𝒍𝒌
𝒋
                                                          (10b) 

2.2 The Multi-cell basic linear precoding techniques 
Single-cell minimum mean squared error (S-MMSE) may be 

expressed in equation (11a) as obtained in [6-7] and [18-19]. 

𝑭𝑱
𝑺−𝑴𝑴𝑺𝑬 =  (�̂�𝒋𝒋𝑷𝑱(�̂�𝒋𝒋)

𝑯
+ 𝒁𝑱)

−𝟏

�̂�𝒋𝒋𝑷𝑱             (11a) 

𝒁𝑱 =  ∑ 𝒑𝒋𝒊𝑪𝒋𝒊
𝒋

 +  ∑ ∑ 𝒑𝒍𝒊𝑹𝒍𝒊
𝒋

𝑲𝒍

𝒊=𝟏

+  𝝈𝟐𝑰𝑴

𝑳

𝒍=𝟏
𝒍≠𝒋

𝑲𝒋

𝒊=𝟏

 

Multi-cell minimum mean squared error (M-MMSE) may be 

expressed in equation (11b) as obtained in [6-7] and [18-19]. 

 𝑭𝑱
𝑴−𝑴𝑴𝑺𝑬 =  (∑ �̂�𝒋𝒍

𝑳
𝒍=𝟏 𝑷𝒍(�̂�𝒋𝒍)

𝑯
+  𝒁𝑱)

−𝟏

�̂�𝒋𝒋𝑷𝑱           (11b) 

𝒁𝑱 =  ∑ ∑ 𝒑𝒍𝒊𝑪𝒍𝒊
𝒋

𝑲𝒍

𝒊=𝟏

+  𝝈𝟐𝑰𝑴

𝑳

𝒍=𝟏

 

Pl is transmitting powers of all UEs from BS j in cell l.  

For MMSE precoding in (11a) and (11b), 𝒁𝑱 has bounded spectral 

norm while �̂�𝒋𝒋𝑷𝑱(�̂�𝒋𝒋)
𝑯

 has LK eigenvalues that grow 

unboundedly as M approaches infinity. As the impact of 

 𝒁𝑱 vanishes, the approach can be used to prove that M-MMSE 

approaches M-ZF asymptotically. 

Multi-cell zero forcing (M-ZF): may be expressed in equation 

(11c) as obtained in [21] and [22]. Zero forcing (ZF) was the first 

performance technique to introduce matrix inversion, which is used 

to suppress or lessen intra-cell interference that is interference from 

UEs within the same cell. 

𝑭𝑱
𝑴−𝒁𝑭 =  �̂�𝒋𝒋 (∑ (�̂�𝒋𝒍)

𝑯
�̂�𝒋𝒍𝒍 )

−𝟏

                                    (11c) 

Multi-cell regularized zero forcing (M-RZF): may be expressed 

in equation (11d) as obtained in [21-22] and [25]. 

𝑭𝑱
𝑴−𝑹𝒁𝑭 =  �̂�𝒋𝒋𝑷𝒋 (∑ 𝑷𝒋(�̂�𝒋𝒍)

𝑯
�̂�𝒋𝒍𝒍 + 𝝈𝟐𝑰𝑲)

−𝟏

           (11d) 

 

 

2.3 Precoding and Matrix Normalization (MN) Method 
The transmitted signal 𝑠𝑗 in equation (1) may be expressed in [15] 

and [17] as: 

𝒔𝒋 =  ∑ 𝒘𝒋𝒊

𝒌𝒋

𝒊=𝟏

𝒅𝒋𝒊                                                        (12a) 

The transmitted signal 𝒔𝒋 from jth BS antennas M in a cell can 

consist of multiple information data signals 𝒅𝒋𝒊 that are transmitted 

making use of different precoding vector 𝒘𝒋𝒊 from jth BS (e.g., 

different spatial directivity). If there are K UEs unit power DL data 

vector 𝒅𝒋𝒊 = [𝒅𝒋𝟏, … , 𝒅𝒋𝑲] from jth BS intended for K different UEs 

in the cell. The transmitted signal 𝒔𝒋 may obtain by the 

multiplication of the precoding vector 𝒘𝒋𝒊 and the information DL 

data vectors  𝒅𝒋𝒊. The precoding vector 𝒘𝒋𝒊 determines the direction 

of the spatial directivity of the DL data signals 𝒅𝒋𝒊, while the 

squared norm  ||𝒘𝒋𝒊||
𝟐 determines the associated transmit power. 

 

Matrix normalization (MN) technique: In this technique, when 

we select the any precoding matrix F and all the entries are scaled 

with the square root of maximum transmit power P which is used to 

satisfy (12c). More precisely, we express matrix normalization 

technique as 

  𝑾 =
√𝑷

||𝑭||𝑭
𝑭                                                                    (12b) 

The computation of the precoding matrix at BS j requires MK 

complex multiplications, which are needed to compute ||𝑭||𝑭  in 

equation (12b) for all UEs at once [3]. We must ensure that the 

squared Frobenius norm of W equals the maximum transmit power 

[1-6]: 

𝒕𝒓𝒂𝒄𝒆(𝑾 × 𝑾𝑯) ≤ 𝑷                                                          (12c) 

Where precoding matrix 𝑾𝝐 ℂ𝑴×𝑲 is defined as the M⤫K-

dimensional precoding matrix. Massive MIMO usually means that 
𝐌

𝐊
 

> 1 and M≫K.  

2.4 Downlink SINR, Spectral Efficiency (DL SE), and 

Network throughput: 
The expression for the effective downlink SINR as given in [15-17] 

and [15] is expressed in equation (13).  

𝑺𝑰𝑵𝑹𝒋𝒌
𝑫𝑳 =  

𝒑𝒋𝒌|𝔼{𝒘𝒋𝒌
𝑯 𝒉𝒋𝒌

𝒋} |
𝟐

∑ ∑ 𝒑𝒍𝒊|𝔼{𝒘𝒍𝒊
𝑯𝒉𝒋𝒌

𝒍} |
𝟐

−𝑲
𝒊=𝟏 𝒑𝒋𝒌|𝔼{𝒘𝒋𝒌

𝑯 𝒉𝒋𝒌
𝒋} |

𝟐𝑳
𝒍=𝟏 +  𝝈𝟐

 (13) 

The expectation 𝔼{} is determined with reference to channel 

realizations. Therefore, a downlink SE maximizes the SINR in Eqn. 

(14) for a given channel estimates are derived in [15-17]: 

𝑺𝑬𝒋𝒌
𝑫𝑳 =  

𝝉𝒄−𝝉𝒑

𝝉𝒄
𝐥𝐨𝐠𝟐( 𝟏 +  𝑺𝑰𝑵𝑹𝒋𝒌

𝑫𝑳)                                         (14)  

The term 
𝝉𝒄−𝝉𝒑

𝝉𝒄
   is the Prelog factor that represents the portion of 

samples per coherence interval that are used for downlink data 

transmission. Network throughput (bits/s) value is obtained by the 

multiplication of operational Bandwidth (Hz) and SE (bits/s/Hz). 

𝑵𝒆𝒕𝒘𝒐𝒓𝒌 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 (
𝒃𝒊𝒕

𝒔
)

= 𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 (𝑯𝒛) × 𝑺𝑬𝒋𝒌
𝑫𝑳 (

𝒃𝒊𝒕
𝒔

𝑯𝒛
) (15)    

3 SIMULATION RESULTS AND DISCUSSION 
There are four methods to generate the channel covariance matrices 

and the resulting spatial correlation. For an arbitrary user, the 
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covariance matrix R can be modeled by using Local Scattering 

Spatial Correlation Model with Gaussian distribution, Laplace 

distribution, Exponential distribution and Uniform angular 

distribution in [8] and [22]. Fig. 2b illustrates the eigenvalue 

distribution with the four covariance models for Number of BS 

antennas, M = 200 antennas, the nominal angle = 30˚and Angular 

standard deviation = 10˚. The covariance matrices are normalized 

such that trace (R) = M. The aforementioned four distributions of 

the angular deviations are compared with the reference case of 

uncorrelated fading below. 

. 

 
Fig. 2b: Eigenvalues of the spatial covariance matrix R when using 

the local scattering model with M = 200 and uncorrelated fading is 

shown as a reference case. 

 
All four angular distributions create larger eigenvalue variations, but 

there are substantial differences. The Uniform angular distribution 

provides rank-deficient covariance matrices, where a large fraction 

of the eigenvalues is zero. In contrast, the other three angular 

distributions provide full-rank covariance matrices with more 

modest eigenvalue variations. In the remainder, we consider only 

exponential distribution to emphasize that our main results only 

require linear independence between the covariance matrices, not 

rank-deficiency (which in special cases give rise to orthogonal 

covariance supports [22]). Uncorrelated fading is shown as a 

reference case where all eigenvalues of covariance matrix are equal. 

 

A square pattern network layout is used in [8]. The 4-cell setup is 

utilized and each cell has an area of 90 km2 [22]. Inter-cell and intra-

cell interference receive by all the base stations are the same in all 

directions. The calculate large-scale fading coefficient, was 

calculated with a channel gain of -35.3 at 1 km, path loss factor of -

3.76, and standard deviation of fading value 10. The operating 

bandwidth of 20 MHz with a noise variance and noise figure 10dB 

was used. A 100mW downlink transmit power was allocated to each 

UE in a particular cell and the number of UEs per cell given as 2 

and 10 [22]. The UEs were equally distributed in each cell. 

 

The simulation results were produced using the code in [22]. In this 

section, we will show numerically that an unlimited throughput is 

achievable under pilot contamination. To this end, the correlation 

(covariance) matrix R was modeled by Exponential correlation 

model for a ULA with correlation factor r of 0.5. Exponential 

correlation model is selected due to full-rank covariance matrices 

with modest eigenvalue variations than uncorrelated Rayleigh 

fading with non eigenvalue variations [22]. 
 

 

 

 

 

TABLE 1 

SIMULATION PARAMETERS 

Parameter Value 

Network layout Square pattern (wrap-around) 

Number of Cells 4 

Number of BS antennas  200 

Communication Bandwidth 20 MHz 

 DL transmit power  100mW (-10dB) 

Noise Figure 10dB 

Noise Variance  −174 + 10 log10 𝐵 +  Noise 

Figure 

Pathloss exponent 3.76 

Shadow fading (standard 

deviation) 

10 

Distance between BSs  300 

Average channel gain using 

the large-scale fading model  
−35.3 − 37.6 log10 𝑑𝑙𝑘

𝑗
  

Standard deviation of large-

scale fading variations 

4 

Total coherence block length 

(τc) 

200 

Channel Model Exponential correlation model 

Number of channel 

realizations per setup 

1000 

Correlation factor (r)  0.5 

Impact on network throughput 

Network throughput is one of the vital metric to evaluate network 

performance in mMIMO networks. This metric is expressed in 

equation (15) and measures the quality of service (QoS) of the 

network. In order to examine the impact of throughput on 

performance, we simulated by increasing the number of antennas in 

the network, to exemplify the performance of the network. Figures 

3, 4, 5, and 6 show the comparison on the network throughput 

metric. In figures 3 and 4, the exponential correlation model with r = 

0.5 is used, but with large-scale fading variations over the array with 

σ = 4. 
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Fig. 3: Downlink throughput as a function of M for K = 2, when 

using either the MMSE estimator with full covariance knowledge.  

M-MMSE and M-RZF precoding are both suboptimal when 

compared to S-MMSE and M-ZF, but they can be shown to be 

asymptotically equal in the downlink. Interestingly, the same 

behaviors are observed in Fig.4 when using the EW-MMSE 

estimator, which is a suboptimal estimator that neglects the off 

diagonal elements of the covariance matrices. 

 

Fig. 4: Downlink throughput as a function of M for K = 2, when 

using either the EW-MMSE estimator with known diagonals of the 

covariance matrices.  

There is a small throughput loss of 2%–4% for M-MMSE, S-

MMSE, M-RZF and M-ZF precoders using EW-MMSE estimator 

compared to Fig. 3, but this is a minor price to pay for the greatly 

simplified acquisition of covariance information (estimating the 

entire diagonal is as simple as estimating a single parameter [23], 

[24]). 

 

 

Fig. 5: Downlink SE as a function of M for K = 20 UEs that are 

uniformly distributed in the shaded cell edge area, when using either 

the MMSE estimator with full covariance knowledge.  . 

We now increase the number of UEs per cell to K = 20, which leads 

to more interference but the same pilot contamination per UE. The 

UEs are uniformly and independently distributed in the cell-edge 

area, which is the shaded area in [22, fig. 3]. The channel model is 

the same as in the previous figures 3 and 4. 

 

 

Fig. 6: Downlink throughput as a function of M for K = 20 UEs that 

are uniformly distributed in the shaded cell edge area, when using 

the EW-MMSE estimator with known diagonals of the covariance 

matrices. 

 

The downlink throughput per UE is shown in figures 5 and 6 when 

using either MMSE or EW-MMSE estimation. The results resemble 

the ones for K = 2, but the curves are basically shifted to the right 

due to the additional interference. M-MMSE and S-MMSE provide 

throughputs that grow without bound, while the throughput with M-

RZF and M-ZF saturate, but more antennas are needed before 

reaching saturation. 
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4 CONCLUSION 
Massive MIMO is a multi-cellular MU-MIMO network that uses a 

large-scale number of BS antennas to spatially multiplex many UEs in 

the same time–frequency resource, but with substantially more antennas 

than UEs to protect against interference. The spatial multiplexing allows 

a sum throughput that increases almost linearly with the number of BS 

antennas, which can lead to orders of magnitude increase in sum 

throughput. The above figures depict throughput performance metrics 

with multi-cell precoding techniques such as M-MMSE, S-MMSE, M-

RZF, and M-ZF. The throughput of the M-RZF and M-ZF are not the 

same. By adding more antennas at BS and simultaneously serving 

multiple UEs in multi-cell with the same time-frequency resources, sum 

throughput is improved significantly.  Finally, there is an average sum 

throughput gain of using M-MMSE over other precoding techniques 

such as S-MMSE, M-RZF, and M-ZF with low complexity. 
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